Thermodynamics of phospholipid self-assembly.

نویسنده

  • Derek Marsh
چکیده

Negatively charged phospholipids are an important component of biological membranes. The thermodynamic parameters governing self-assembly of anionic phospholipids are deduced here from isothermal titration calorimetry. Heats of demicellization were determined for dioctanoyl phosphatidylglycerol (PG) and phosphatidylserine (PS) at different ionic strengths, and for dioctanoyl phosphatidic acid at different pH values. The large heat capacity (ΔC°(P) ∼ -400 J.mol(-1) K(-1) for PG and PS), and zero enthalpy at a characteristic temperature near the physiological range (T(∗) ~ 300 K for PG and PS), demonstrate that the driving force for self-assembly is the hydrophobic effect. The pH and ionic-strength dependences indicate that the principal electrostatic contribution to self-assembly comes from the entropy associated with the electrostatic double layer, in agreement with theoretical predictions. These measurements help define the thermodynamic effects of anionic lipids on biomembrane stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers.

Despite significant efforts and promising progress, the understanding of membrane protein folding lags behind that of soluble proteins. Insights into the energetics of membrane protein folding have been gained from biophysical studies in membrane-mimicking environments (primarily detergent micelles). However, the development of techniques for studying the thermodynamics of folding in phospholip...

متن کامل

Self-Assembly of Human Serum Albumin: A Simplex Phenomenon

Spontaneous self-assemblies of biomolecules can generate geometrical patterns. Our findings provide an insight into the mechanism of self-assembled ring pattern generation by human serum albumin (HSA). The self-assembly is a process guided by kinetic and thermodynamic parameters. The generated protein ring patterns display a behavior which is geometrically related to a n-simplex model and is ex...

متن کامل

Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs) via electroformation. He...

متن کامل

Thermodynamics of Self - Assembly L

Self-assembly of molecules to form much larger colloidal or nanosized aggregates has received a great deal of attention the last decades or so and the number of technical applications and products based on the principle of self-assembly is still rapidly increasing. Moreover, fundamental processes in life sciences such as the properties and stability of lipid membranes and their interactions wit...

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 102 5  شماره 

صفحات  -

تاریخ انتشار 2012